a2zpapers.com

Exam. Code : 103206 Subject Code : 1437

B.A./B.Sc. 6th Semester PHYSICS

Paper-A

(Nuclear Physics)

Time Allowed—Three Hours] [Maximum Marks—35

Note :— Section-A is compulsory. Attempt each question from Sections B, C, D and E. Each section carries equal marks.

SECTION-A

- 1. (a) Find the packing fraction of deuteron. Given $M_d = 2.014102$ u.
 - (b) Why do stable heavy nuclei have greater number of neutrons than protons ?
 - (c) What is the ground state angular momentum and parity of ¹³C nucleus ?
 - (d) Calculate binding energy per nucleon of alphaparticle. Given $M_p = 1.007825 \text{ u}$, $M_n = 1.008665 \text{ u}$ and $M_{alpha} = 4.002603 \text{ u}$.
 - (e) What is the approximate magnetic moment of ³Li ?

2795(2518)/CTT-423

(Contd.)

www.a2zpapers.com www.a2zpapers.com ad free old Question papers gndu, ptu hp board, punjab

1

a2zpapers.com

- (f) What do you mean by saturation of nuclear forces ?
- (g) Describe phenomenon of internal pair creation in nuclei.

SECTION-B

- (a) Discuss the nature of the nuclear forces and the Yukawa theory.
 - (b) Estimate the eccentricity of ¹²³Sb₅₁, given the quadrupole moment is -1.0 barns. Assume the mean radius to be equal to 1.2 A^{1/3} fm, where A is the mass number of nucleus.
- 3. (a) Describe a method to determine the charge radius of the nucleus.
 - (b) Using semi-empirical mass formula, how can one determine the most-stable isobar among odd-A nuclei ?

SECTION-C

- (a) Describe briefly the elementary theory for β-decay.
 - (b) In β -decay, if a $\left(\frac{5}{2}\right)^+$ nuclear state decays by

first forbidden Fermi-type transition, what are the possible spin-parity of final state ?

2795(2518)/CTT-423

2

(Contd.)

www.a2zpapers.com www.a2zpapers.com ad free old Question papers gndu, ptu hp board, punjak

a2zpapers.com

- (a) A radioactive element has a half-life of 25 hours.
 After what time will 1/8th of initial number of its atoms disintegrate ? After what time will 1/32 of the initial number remain unchanged ?
 - (b) How do you classify nuclear transitions in beta decay ? What are allowed and forbidden transitions ? Illustrate your answer with examples.

SECTION-D

- 6. (a) Discuss different types of nuclear reactions with appropriate examples.
 - (b) A beam of 7.3 MeV alpha-particle is used to produce the reaction ²⁷Al(α, p)³⁰Si. The protons are emitted at 0° are found to have an energy of 9.34 MeV. What is the Q-value of this reaction ?
- (a) Discuss the kinematics of the nuclear reaction. Obtain the expression of the Q-value and discuss its significance.
 - (b) The Q-values of the reactions ²H(d, t)¹H and ²H(d, ³He)¹n are 4.032 and 3.269 MeV respectively. The β-disintegration energy of ³H is known to be 0.019 MeV. Calculate the β-disintegration energy of neutron ?

2795(2518)/CTT-423

(Contd.)

www.a2zpapers.com www.a2zpapers.com ad free old Question papers gndu, ptu hp board, punjab

3

SECTION-E

- 8. (a) Explain the origin of nuclear magnetic moment.
 Using Schmidt single particle model, deduce expressions for magnetic dipole moment. What are Schmidt lines ?
 - (b) Write angular momentum and parities of ¹⁷O and ²⁷Al.
- 9. (a) What are the limitations of shell model ?
 - (b) Given that the single particle separation between $1d_{5/2}$ and $1d_{3/2}$ in ¹⁷O is 5 MeV, calculate the strength of spin-orbit interaction.

2795(2518)/CTT-423

4

4300

www.a2zpapers.com www.a2zpapers.com ad free old Question papers gndu, ptu hp board, punjal